Synthesis and characterization of thermally unstable xenon(II)-nitrogen and xenon(II)-oxygen bonded cations J.M. Whalen, G.J. Schrobilgen * Department of Chemistry, McMaster University, Hamilton, Ont., L8S 4M1, Canada Keywords: Syntheses; Xenon-nitrogen cations; Xenon-oxygen cations; NMR spectroscopy; Raman spectroscopy The salt CF₃C(OH)=NH₂⁺ AsF₆⁻ has been prepared from the reaction of CF₃C(O)NH₂ with excess AsF₅ in HF solvent. In BrF₅ solvent it undergoes an HF elimination reaction with XeF₂: $$CF_3C(OH) = NH_2^+ AsF_6^- + XeF_2 \xrightarrow{-62 \text{ °C to } -55 \text{ °C}}$$ $$CF_3C(OXeF) = NH_2^+ AsF_6^- + HF$$ (1) where $[CF_3C(OXeF)=NH_2^+]/[CF_3C(OH)=NH_2^+]=0.32\pm0.03~(-60~^{\circ}C)$. The 1H , ^{19}F , ^{13}C and ^{129}Xe NMR spectra recorded in BrF₅ solvent were consistent with structure I for the $CF_3C(OXeF)=NH_2^+$ cation $[\delta(^{129}Xe)=-1578~ppm;~\delta(^{19}F)=-183.1~(F-on-Xe^{II})~ppm;~^{1}J(^{129}Xe-^{19}F)=5991~Hz]$. Hindered rotation about the C=N double bond rendered the NH_2 protons nonequivalent in the ^{1}H NMR spectrum. The reaction of equimolar amounts of XeF^+ AsF_6^- and $CF_3C(O)NH_2$ in HF solvent followed by removal of the solvent under vacuum at -50 °C resulted in a white polycrystalline solid exhibiting a Raman spectrum (-165 °C) consistent with the formulation $CF_3C(OXeF)=NH_2^+ AsF_6^-$. The 99% 15 N-enriched F_5 TeN(H)—Xe⁺ cation was prepared in HF and BrF₅ solvents: $$F_5$$ TeN H_2 +Xe F^+ As $F_6^- \xrightarrow{-33 \text{ °C}}_{HF}$ $$F_5 TeN(H) - Xe^+ AsF_6^- + HF$$ (2) $$F_5$$ TeN H_3^+ As F_6^- + Xe $F_2 \stackrel{-58 \text{ °C}}{\rightleftharpoons}$ $$F_5 \text{TeN(H)} - \text{Xe}^+ \text{As} F_6^- + 2 \text{HF}$$ (3) where the ratio $[F_5TeN(H)-Xe^+]/[F_5TeNH_3]$ was $0.26\pm0.03~(-33~^{\circ}C)$ and $0.87\pm0.09~(-57.6~^{\circ}C)$ in HF and BrF₅ solvents, respectively. Multi-NMR spectra (^{1}H , ^{19}F , ^{15}N , ^{125}Te and ^{129}Xe) in both solvents were consistent with structure II $[\delta(^{129}Xe)=-2840~ppm~(HF),~-2902~(BrF_5);~ <math>^{1}J(^{129}Xe^{-15}N)=138~Hz]$. The orange salt $F_5TeN(H)-Xe^+$ AsF₆ has been isolated from HF solvent at -35 to $-40~^{\circ}C$ and characterized by Raman spectroscopy $(-165~^{\circ}C)$. Decomposition of the $F_5TeN(H)-Xe^+$ cation produces Xe and the novel difluoramine F_5TeNF_2 , which has been characterized by ¹⁹F and ¹⁵N NMR spectroscopy. Decomposition of F_5TeNF_2 was rapid at -20 °C in HF solvent containing AsF₅, producing TeF₆ and $FN\equiv N^+$ AsF₆⁻; this is analogous to decompositions observed for several difluoramino compounds in the presence of SbF₅ and AsF₅ [1]. The ¹⁵N-enriched (99%) FO₂SN(H)–Xe⁺ cation (III) has been prepared in HF and BrF₅ solvents and characterized by ¹⁹F, ¹H and ¹²⁹Xe NMR spectroscopy $[\delta(^{129}\text{Xe}) = -2660 \text{ ppm}, ^1J(^{129}\text{Xe}-^{15}\text{N}) = 109 \text{ Hz}; -61 ^{\circ}\text{C in BrF}_5 \text{ solvent}]$ $$FO_2SNH_2 + XeF^+ AsF_6^- \xrightarrow{-49 \text{ °C}}$$ $$FO_2SN(H) - Xe^+ AsF_6^- + HF$$ (4) ^{*} Corresponding author. $$FO_2SNH_3^+ AsF_6^- + XeF_2 \xrightarrow{-57 \text{ °C to } -61 \text{ °C}}$$ $$FO_2SN(H) - Xe^+ AsF_6^- + 2HF \qquad (5)$$ where $[FO_2SN(H)-Xe^+]/[FO_2SNH_3^+] = 0.11 \pm 0.01$ (-60.4 °C) in BrF₅ solvent. The ¹²⁹Xe NMR chemical shifts of xenon(II) compounds and the magnitudes of the ¹ $J(^{129}Xe^{-19}F)$ coupling constants can be used to assess the covalent characters of Xe-L bonds (L=F, O, N, C) [2]. NMR spectroscopic data indicate that the covalent characters of the Xe-O and Xe-F bonds in the CF₃C(OXeF)=NH₂⁺ cation are similar to those of XeF₂. The highly shielded ¹²⁹Xe NMR resonances for the F₅TeN(H)-Xe⁺ and FO₂SN(H)—Xe⁺ cations indicate that they contain highly covalent Xe—N bonds. The bonding and decomposition reactions of these cations are analogous to those observed for the recently prepared arylxenonium(II) cations, which contain highly covalent Xe—C bonds [3]. ## References - K.O. Christe, W.W. Wilson, C.J. Schack and R.D. Wilson, *Inorg. Chem.*, 24 (1985) 303. - [2] A.A.A. Emara and G.J. Schrobilgen, *Inorg. Chem.*, 31 (1992) - [3] (a) H.J. Frohn, Nachr. Chem. Tech. Lab., 41 (1993) 956; (b) D. Naumann, H. Butler, R. Gnann and W. Tyrra, Inorg. Chem., 32 (1993) 861.